E25/CS25 Computer Architecture Guest Lecture

VHDL

VHDL is a hardware description language.

e You can describe hardware at the level of individual gates and conneatieitist

e You can describe hardware as the flow of information between regisiaiesiow

e You can describe hardware as the behavior of the circuit in response to ibpheszioral
VHDL is a programming language

e There are variables that can hold values

e There are functions that take input and output parameters

e There are control structures that manage the sequence of operations
But,

All elements of the language have a connection with a piece of hardware.

Why do you want a hardware description language?

e To simulate hardware before implementing it

To make design entry simpler than moving boxes and connecting wires

To simplify verification and testing

To simplify communication between different tools in a CAD environment

To permit a standard for specification of inputs, outputs, and behavior of digital circuits

VHDL Structure

There are two types of digital circuits you can make: combinational and sequential

Combinational: the output is a function of only the input variables (no memory).

Combinational: the circuit does not have a clock or any clocked signals.

Sequential; the output is a function of the current state (memory) and the inputs.

Sequential: the circuit has something that functions as a clock and clocked signals.
The structure of a VHDL program
e The entity structure defines the input and output characteristics of the circuit

e The architecture structure defines the function of the circuit.

(©2007 Bruce A. Maxwell 1 January 26, 2007

E25/CS25 Computer Architecture Guest Lecture

Example: Dataflow design for a 2-4 decoder that takes as input a binary number in [0, 3] and raises the
specified output line high.

library ieee; -- use the IEEE library
use ieee.std_logic_1164.all; -- specify which package in the library to include

entity V2toddec is
port (EN: in std_logic;
I: in std_logic_vector(0 to 1);
Y: out std_logic_vector(0 to 3));
end VZ2toddec;

architecture dataflow of V2toddec is
begin

Y[0] <= EN when | = "00" else '0
Y[1] <= EN when | = "01" else '0’
Y[2] <= EN when | = "10" else '0;
Y[3] <= EN when | = "11" else "0

end dataflow;
Example: Up-down binary counter circuit that has a reset, clock, and output signals

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity TheRings is
port(reset, clock, direction: in std_logic;
value: out std_logic_vector(7 downto 0));
end TheRings;

architecture Lord of TheRings is
signal Q: unsigned(7 downto O0);
begin
process (reset, clock) begin
if reset = 'L’ then
Q <= "00000000";
elsif clock = "1’ and clock’event then
if direction = '0’ then

Q<=Q+ 1
else
Q<=Q -1
end if;
end if;

end process;

value <= std_logic_vector(Q);
end Lord;

(©2007 Bruce A. Maxwell 2 January 26, 2007

E25/CS25 Computer Architecture Guest Lecture

Things you need to know

e VHDL is strongly typed. Certain types can do certain things.

e Use the built-in type casting functions to convert from, for example, unsigned fogitdvector.
e To create a vector of bits, use quotes

e To specify a single value like '0’ or '1’, using single quotes

e To initialize different types, sometimes you use integers, sometimes you use strings

e Use the concatenation operator, &, to mess around with individual bits in a string

e Theclock ='1" and clock’eventis just a fancy way of saying “rising edge”.

State machine design

You state machines should all follow the same pattern, always.

entity three_consecutive is
port(clk, r, x: in std_logic; Z: out std_logic);
end three_consecutive;

architecture moore of three_consecutive is
type state is (nozeros, onezero, twozeros, threezeros);
signal fsm_state: state := nozeros;
begin
-- implement the state logic as a case statement
process (clk, r, X) begin
if r = 1 then
fsm_state <= nozeros;
elsif clk = 1 and clkevent then
case fsm_state is
when nozeros =>
if Xx = 0 then fsm_state <= onezero;
else fsm_state <= nozeros;
end if;
when onezero =>
if x = 0 then fsm_state <= twozeros;
else fsm_state <= nozeros;
end if;
when twozeros =>
if x = 0 then fsm_state <= threezeros;
else fsm_state <= nozeros;
when others =>
if x = 0 then fsm_state <= onezero;
else fsm_state <= nozeros;
end case;
end if;
end process;
-- implement the output logic as a simple conditional signal assigment
Z <= 1 when fsm_state = threezeros else O;
end moore;

(©2007 Bruce A. Maxwell 3 January 26, 2007

E25/CS25 Computer Architecture Guest Lecture

VHDL is not a functional programming language

The following code snippets may seem like they do the same thing:

architecture A of C is
signal x, y: std_logic;
begin
X <= input_value;
y <= X;
output_value <= vy;
end A;

architecture B of C is
signal x, y: std_logic
begin
process(trigger) begin
X <= input_value;
y <= X;
output_value <= vy;
end process;
end B;

All statements outside of a process are catledcurrent statements
e They are all running at the same time
e Any time the right side of a concurrent assignment statement changes, the statement executes
e Think of the assignment statement and the two variables on either side as all a single wire
All statements inside of a process are caeduential statements
e The assignments dwot take place before the next line is executed
e The assignments are placed into a queue, with their current values in the order in which they are read
e The actual assignments are made at the end of the process statement
e The process statement only executes when the trigger changes

The cool thing about a hardware description language:

architecture B of C is
signal x, y: std_logic
begin
process(trigger) begin
if trigger = '1’ and trigger'event then

X <= vy; -- this works fine because the current value of y is stored in the queue
y <= X; -- the current value of x is stored in the queue
end if;
end process; -- now both assignments take place simultaneously
end B;

(©2007 Bruce A. Maxwell 4 January 26, 2007

E25/CS25 Computer Architecture Guest Lecture

Maxwell‘'s Cardinal Rules of VHDL

Never use variables; always use signals
Never use for loops
Sequential circuits should always follow the state machine structure

Give yourself output signals that tell you what is going on

o & w0 DdPE

Use theVHDL template function in Quartus

(©2007 Bruce A. Maxwell 5 January 26, 2007

